
JAW User Guide

(Java API Wrapper)

Aegidius Plüss

www.aplu.ch/jaw

 2

Content

1 Concepts 3

2 Installation of JAW and first sample application 5
2.1 Integration of third-party non-Java libraries ...9
2.2 Using native windows...13
2.3 Callbacks using JNIMethod<type>...17
2.4 Transfer of string and array data ...24
2.5 Using realtime measurement modules from National Instruments29
2.5.1 Porting acquire1Scan ..30
2.5.2 Porting contAcquireNScan..38
2.6 Data transfer using JNIBuffer ...46

3 Apendix: Installation of Microsoft Visual Studio 55

 3

1 Concepts
JAW is a frameworks with an underlying proxy pattern. In JAW a Java class and its methods
have a close correspondence to the native C++ class and their methods. JAW uses but hides
the JNI mechanism by defining two wrapper classes, NativeHandler for Java and
WindowHandler for C++. A typical JAW application uses an instance of NativeHandler
and derives from WindowHandler. No knowledge of JNI is required, but a basic knowledge
of C++ is necessary, due to the fact that the user of JAW must edit and build the native DLL
with a C++ IDE, typically with Microsoft's Visual Studio.

Features:

• Hides internal mechanism of JNI, no native Java methods
and no JNI C-functions needed

• Native code runs in a separate native (high priority) thread
that is transparent to the user

• Easy creation of visible or semi-transparent native windows
with simple access to its event loop by registering specific messages

• Data transfer between primitive Java instance variables and C++
with templates eliminates type casts

• Data transfer between Java strings and array with C++ templates.
• Support for Unicode, MBCS and UTF-8 strings
• Callbacks of Java methods with C++ templates
• Native FIFO buffer for streaming data transfer from C++ to Java
• Designed to integrate third party DLL libraries into Java, e.g drivers

for realtime measurement devices (National Instruments, Keithley, etc.)
• Error handling by callbacks or returning error codes rather than throwing exceptions
• Unnecessary to use javah to generate C header files

Compared to plain JNI, there are a few restrictions:

• No support of the Java invocation API (dynamic creation of a JVM, classes and
methods)

• No support of data transfer via Java static fields
• Only available for the Windows operating system

On the Java side, all JAW functionalities are provided through the library jaw.jar that
contains the wrapper class NativeHandler. While instantiating this class the link
between Java and C++ is automatically establish by calling the C function

 4

selectWindowHandler(JNIEnv * env, jobject obj, int select)

This is the only relict of JNI. In the body of this function a user provided C++ class (here
called MyWindowHandler) must be instantiated that is derived from WindowHandler.
The JNI parameters env and obj are used to initialize WindowHandler. They are never
seen in the user code any more. select is used to distinguish more than one class in the
same C++ project. This concept shields the user from most of the internal mechanism of JNI.

For simplicity the invocation of C++ methods is exclusively performed by NativeHandler's
method int invoke(int tag), where the parameter tag is used to select one of
several C++ methods. The data transfer between Java and C++ is mainly done through Java
instance variables. In some simple cases, the return value of invoke() or callbacks may be
used instead. Because the access to instance variables are based on C++ templates, this
mechanism is particularly simple and omits ugly type casts between JNI and C++ data types.

Different overridden constructors of NativeWindow provide different native behavior. In the
most simple situation, only the path of the native DLL is passed. In order to give C++ read
and write access to instance variables of a Java class , its reference is passed to the
constructor or expose() is called. As the word suggests, this operation exposes even
private instance variables to the C++ code that may access them without restrictions.

The NativeHandler's method startThread() creates a native high-priority thread. The
corresponding ThreadEventProc calls the user provided evThreadMsg() in
MyWindowHandler each time a Windows thread message is posted. In addition to the
standard Win32-API messages, WM_THREADSTART and WM_THREADSTOP indicate
the start and stop of the internal thread. Because evThreadMsg() runs in the native thread
that is independent of the Java threads, asynchronous operations may be performed like
natively clocked acquiring data from a measurement interface. A circular FIFO buffer is
provided where C++ stores the acquired data while Java fetches them in its own thread, that
may be somewhat delayed due to heavy CPU load.

A distinct constructor of NativeWindow creates a native window using the Win-32-API
function CreateWindow() with selectable window style. Getting the windows messages
from the corresponding WindowEventProc is very simple: Override evMsg() from
WindowHandler in the user provided MyWindowHandler. To enhance performance
only user selected messages defined with an OR-mask will call evMsg(). In order to make
the native window independent of the JVM, evMsg() runs in a separate native thread, that
is completely hidden from the user code.

 5

2 Installation of JAW and first
sample application

In all our examples we assume Microsoft Visual Studio 2008 Express Edition (English
version) as IDE to develop the native DLL. A short installation guide can be found in the
appendix. You download the latest JAW distribution from www.aplu.ch/jaw and unpack it in
any folder. Copy jaw.jar in your favorite jar-folder, e.g. c:\jars, and include is as
additional library to all Java projects. Some applications need classes from the package
ch.aplu.util. For these samples copy aplu5.jar in c:\jars and include the jar
file as additional library to the project.

Copy the static library jaw.lib in some other folder, e.g. c:\myjni, create a
subdirectory include and put all include files from the JAW distribution in
c:\myjni\include.

Our sample application shows how to pass the values of two instance variables to the native
code where they are increased by one. The modified values are read back by Java and
displayed in a modal dialog. We also demonstrate how to pass a value as method parameter
to C++ and how to get the modified value back to Java by using the return value of the
method call.

The native code is packed in the DLL jawample.dll, which will be created later on. The
constructor of NativeHandler takes the fully qualified path to this DLL in order to load
the native library. The this-reference passed to the constructor gives C++ read/write access
to all instance variables, even if they are private.

Contrary to the JNI, the qualifier native is not necessary to share values with the native
code and there is no need to create a C header file using javah. We proceed top-down and
write the Java code first. (In this context we consider Java as main and C++ as helper
language.)

// JawEx1.java

import javax.swing.JOptionPane;
import ch.aplu.jaw.*;

public class JniEx6
{
 // Native variables
 private int n = 0;
 private double x = 0;

 public JniEx6()
 {
 NativeHandler nh = new NativeHandler(

 6

 "c:\\myjni\\jawsample\\release\\jawsample.dll",
 this); // Exposed object

 int rc = JOptionPane.YES_OPTION;
 int val = 0;
 while (rc == JOptionPane.YES_OPTION)
 {
 rc = JOptionPane.showConfirmDialog(null,
 "n = " + n + "; x = " + x + "; val = " + val,
 "JawInc",
 JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.INFORMATION_MESSAGE);
 if (rc != JOptionPane.YES_OPTION)
 {
 nh.destroy();
 System.exit(0);
 }
 // Invoke native method
 val = nh.invoke(val);
 }
 }

 public static void main(String args[])
 {
 new JniEx6();
 }
}

As we will see, the invocation of invoke() calls the C++ method with the same name.
Next you develop the native Code using Visual Studio. First create a new project with File
| New | Project. In the New Project dialog select Visual C++ | Win32 in
the Project Types section and Win32 Project in the Templates section. Enter
jawsample as project name and click OK. The Win32 Application Wizard will
open, where you click Next. As Application Settings choose DLL as
Application type and Empty project as Addition options and click
Finish. The Solution Explorer pane will open. In the icon bar change Debug to
Release. For the following steps we assume that the JAW includes are in
c:\myjni\include and the JAW library jaw.lib is in c:\myjni.

Right-click on Source Files and select Add | New Item. The Add New Item
dialog will open. Under Categories select Code and under Templates select C++
File. Enter JawSampleHandler as name and click Add. Right-click on Header Files,
then select Add | New Item. Under Categories select Code and under Templates
select Header File. Enter JawSampleHandler as name and click Add.

It is important to modify some of the project properties by right-clicking on the project name
in the Solution Explorer:

 7

Configuration Properties

• General | Character Set | Use Multi-Byte Character Set
• C/C++ | General | Additional Include Directories: c:\myjni\include
• Linker | Input | Additional Dependencies: c:\myjni\jaw.lib
• Linker | Debugging | General Debug Info: No

Now edit the header file JawSampleHandler.h in the usual C++ way of life.

// JawSampleHandler.h

#ifndef __JawSampleHandler_h__
#define __JawSampleHandler_h__

#include "jaw.h"

// ----------------- class JawSampleHandler -----------------
class JawSampleHandler : public WindowHandler
{
public:
 JawSampleHandler(JNIEnv * env, jobject obj)
 : WindowHandler(env, obj)
 {}

private:
 int invoke(int tag);
};

#endif

Remarks:

• The Class JawSampleHandler inherits from WindowHandler and has an empty
constructor, but initializes the base class with env and obj. The only method is
invoke() with given signature and return type

• We must include jaw.h to get the JAW class declarations

The implementation of JawSampleHandler defines the global function
selectWindowHandler() that is called when Java instantiates NativeWindow.

// JawSampleHandler.cpp

#include "JawSampleHandler.h"

// ----------------- Selector -------------- ---------------
WindowHandler *
 selectWindowHandler(JNIEnv * env, jobject obj, int select)

 8

{
 return new JawSampleHandler(env, obj);
}

// ----------------- class JawSampleHandler ------------------
int JawSampleHandler::invoke(int val)
{
 // Read Java variables
 int n = JNIVar<int>(_exposedObj, "n").get();
 double x = JNIVar<double>(_exposedObj, "x").get();

 // Perform operations
 val++;
 n++;
 x++;

 // Write back Java variables
 JNIVar<int>(_exposedObj, "n").set(n);
 JNIVar<double>(_exposedObj, "x").set(x);

 return val;
}

Remarks:

• The global selector or dispatcher method selectWindowHandler() creates an
instance of our own class while passing the initialization values env and obj to the base
class WindowHandler. It establishes the link between the C based JNI and C++ and
provides the information about the JVM and the Java object, that exposes its variables
and methods. The parameter select can be used to make a selection between several
user defined classes. It's not used in this example

• We access the Java instance variables through template classes JNIVar<type>. The
constructor takes the inherited object reference and the name of the variable. We call its
methods get() and set() of the anonymous temporary object. The following
primitive types are supported: bool, signed char, short, int, __int64,
float, double, wchar_t

• invoke() reads the instance variables, performs the increment operation and writes
them back. It also reads its parameter val and returns it incremented by one. Since the
signature of invoke() is predefined, only int parameters can be passed in this way

With menu option Build | Build Solution (or F7) you create jawsample.dll in
the folder c:\myjni\jawsample\Release. No errors or warnings should occur. With
satisfaction we run JawEx1 with success.

 9

2.1 Integration of third-party non-Java libraries
One of the main purpose for the development of JAW was the easy integration of non-Java
libraries into a Java application. Sometimes the source code is available, but most of the time
only a dynamic library (DLL) together with its static import library are distributed.

In our next example we show how easy it is to integrate a given DLL in a Java program. For
the purpose of the demonstration we use the audio library irrKlang, that you can download
without charge from the internet (using a search machine with the keyword irrklang). The
library is fine to play sound files in several formats, such as wav, mp3, ogg, etc. Moreover
you can enrich the sound with several effect, such as echo, reverb, distortion. The libraries is
specially suitable to add a sound background to game applications.

After downloading and unpacking you should take a short view to the distributed sample
programs found in the example folder. As you see there, it's very easy to play a sound file.
Just create an instance of ISoundEngine

ISoundEngine * engine = createIrrKlangDevice();

and start playing with

 engine->play2D("soundfile");

where soundfile is the fully qualified path to the sound file.

As usual we begin on the Java side and write a simple application that displays a modal
dialog using a JOptionPane where the user clicks the OK button to start playing. Clicking
the OK button in the next dialog, terminates the application. For the sake of simplicity the
path to the sound file is hardwired in the Java code and read by the native code.
invoke(0) initializes the native sound engine und returns an error code (0 for success, -1
for failure). The sound engine needs to run in a native thread, because the Java thread is
blocked in the modal dialog. This native thread is started with startThread().

// JawEx2.java
// Use free audio library irrKlang from www.ambiera.com
import javax.swing.JOptionPane;
import ch.aplu.jaw.*;

public class JawEx2
{
 // Native variable
 private String audiofile = "c:/scratch/bamboleo.mp3";

 public JawEx2()
 {
 NativeHandler nh = new NativeHandler(
 "c:\\myjni\\audio\\release\\audio.dll", this);
 if (nh.invoke(0) == -1)

 10

 {
 JOptionPane.
 showMessageDialog(null,
 "Could not start IrrKlang engine",
 "Fatal Error",
 JOptionPane.ERROR_MESSAGE);
 nh.destroy();
 System.exit(-1);
 }

 JOptionPane.
 showMessageDialog(null,
 "Press OK to start",
 "Trying to play " + audiofile + "...",
 JOptionPane.INFORMATION_MESSAGE);
 nh.startThread(); // Start engine in high priority thread
 JOptionPane.
 showMessageDialog(null,
 "Press OK to stop",
 "Playing...",
 JOptionPane.INFORMATION_MESSAGE);

 nh.destroy();
 System.exit(0);
 }

 public static void main(String args[])
 {
 new JawEx2();
 }
}

Like before, create a new project in Visual Studio named audio and add the new files
AudioHandler.cpp and AudioHandler.h. In the project properties add the irrKlang
include folder in addition to the JAW include folder. If you unpacked irrKlang in
c:\irrKlang, the folder is named c:\irrKlang\include. Append to the linker
additional dependencies the irrKlang import library c:\irrKlang\lib\win32-
visualstudio\irrKlang.lib. Copy the irrKlang DLLs irrKlang.dll and
ikpMP3.dll to the home directory of the Java project, in order to be loaded by
AudioHandler.dll. (If you get an RuntimeException: Can’t load DLL, these DLLs are
not in the right folder.)

The interface AudioHandler.h declares the class AudioHandler. Override
WindowHandler’s methods wantThreadMsg() and evThreadMsg() and declare the
instance variables engine and audiofile.

// AudioHandler.h

 11

#ifndef __AudioHandler_h__
#define __AudioHandler_h__

#include "jaw.h"
#include "irrklang.h"
using namespace irrklang;

// ----------------- class AudioHandler ----------------------
class AudioHandler : public WindowHandler
{
public:
 AudioHandler(JNIEnv * env, jobject obj)
 : WindowHandler(env, obj)
 {}

protected:
 virtual bool wantThreadMsg(UINT uMsg);
 virtual void evThreadMsg(HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);
private:
 int invoke(int tag);
 ISoundEngine * engine;
 const char * audiofile;

};

#endif

We mention some particularities in the implementation of AudioHandler:

• invoke() initializes the sound engine. With a string template we get the path of the
sound file from the Java instance variable

• An OR-mask in ThreadMsg() let you select which messages of the ThreadEventProc
are really needed. In addition to the non-windows related WM_messages documented in
the Win32-API documentation, two extra messages WM_THREADSTART and
WM_THREADSTOP are sent when Java calls startThread() or stopThread()
respectively

• evThreadMsg() is called each time a message is sent. All information about the
message can be retrieved from its parameters. evThreadMsg() runs in a native thread,
so we play the sound file within this thead by calling play2D() in the
WM_THREADSTART section. In the WM_THREADSTOP section that also runs when
NativeHandler.destroy() is called, the sound engine and the allocated string
array are freed.

// AudioHandler.cpp

 12

// Project properties: Add irrKlang include directory
// Add library irrKlang.lib
// irrKlang.dll and ikpMP3.dll must reside in the
// Java class home directory

#include "AudioHandler.h"

// ----------------- Selector -------------------------------
WindowHandler *
 selectWindowHandler(JNIEnv * env, jobject obj, int select)
{
 return new AudioHandler(env, obj);
}

// ----------------- class AudioHandler ----------------------
int AudioHandler::invoke(int val)
{
 // Get string from Java instance variable
 audiofile = JNIString(_exposedObj, "audiofile").getUTF8();

 // Start the sound engine with default parameters
 engine = createIrrKlangDevice();

 if (!engine)
 return -1; // Error starting the engine
 return 0;
}

bool AudioHandler::wantThreadMsg(UINT uMsg)
{
 return (uMsg == WM_THREADSTART || WM_THREADSTOP);
}

void AudioHandler::evThreadMsg(HWND /*hwnd*/,
 UINT message,
 WPARAM /* wParam */,
 LPARAM /* lParam */)
// Runs in the high priority native JNIThread
{
 switch (message)
 {
 case WM_THREADSTART:
 engine->play2D(audiofile);
 break;

 case WM_THREADSTOP:
 engine->drop(); // Delete engine
 delete [] audiofile; // Release allocated memory

 13

 break;
 }
}

After building audio.dll run the Java application JawEx2. When you click the OK
button on the modal dialog box the sound starts playing until you click the OK button again.

2.2 Using native windows
In some situations a native window that displays text, graphics or images and where the
messages sent to its WindowEventProc are accessible is a better choice than Swing or AWT
windows. Native windows may have interesting properties missing in Java like semi-
transparency. In the next example you create a window with selectable transparency level. It
contains an BMP image. As usual you start writing the Java application JawEx3.java.

// JawEx3.java

import ch.aplu.jaw.*;
import javax.swing.JOptionPane;

public class JawEx3
{
 public JawEx3()
 {
 NativeHandler nh = new NativeHandler(
 "c:\\myjni\\trans\\release\\trans.dll", // Path of DLL
 "Transparent window", // Window title
 10, 20, // Window position
 260, 200, // Window size
 NativeHandler.WS_EX_TRANSPARENT); // Window style

 String valueStr = "";
 int value;

 while (valueStr != null)
 {
 valueStr = JOptionPane.showInputDialog(
 null, "Transparency (0..100)",
 "Native Window Transparency",
 JOptionPane.QUESTION_MESSAGE);
 try
 {
 value = Integer.parseInt(valueStr);
 if (value < 0 || value > 100)
 throw new NumberFormatException();

 14

 }
 catch (NumberFormatException ex)
 {
 continue;
 }
 nh.showWindow(value);
 }
 nh.destroy();
 System.exit(0);
 }

 public static void main(String args[])
 {
 new JawEx3();
 }
}

We use one of the overloaded constructors of NativeWindow that defines the most
important window properties. When executing, JAW registers a window class using the
Win32-API function RegisterClassEx() and creates a window with the given OR-
combination of style flags with the API function CreateWindow(). These flags are
declared and documented in NativeWindow.

The program is running in a loop and displays a modal dialog where the percentage of
transparency may be entered. Next you edit the interface of the class TransHandler.

// TransHandler.h

#ifndef __TransHandler_h__
#define __TransHandler_h__

#include "jaw.h"

// ----------------- class TransHandler ----------------------
class TransHandler: public WindowHandler
{
public:
 TransHandler(JNIEnv * env, jobject obj);

protected:
 virtual bool wantMsg(UINT uMsg);
 virtual bool evMsg(HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);
};

#endif

 15

TransHandler overrides wantMsg() and evMsg() from WindowHandler. Similar
to wantThreadMsg() and evThreadMsg() the OR-mask in wantMsg() determines
which messages sent to the WindowEventProc will call evMsg(). In this example we need
WM_CREATE and WM_DESTROY that occur when the window is created and destroyed
respectively, and also WM_PAINT that occurs each time the window must be repainted. For
details about the Win32-API you get many information from the internet using a search
machine and the keywords windows api programming tutorial.

We should mention that evMsg() runs automatically in a native thread that is completely
decoupled from the JVM what makes the native window completely independent of the Java
threads.

// TransHandler.cpp

#include "TransHandler.h"
#include <windows.h>

// ----------------- Selector --------------------------------
WindowHandler *
 selectWindowHandler(JNIEnv * env, jobject obj, int select)
{
 return new TransHandler(env, obj);
}

// ----------------- class TransHandler ---------------------
// Constructor, initialize base class
TransHandler::TransHandler(JNIEnv * env, jobject obj)
 : WindowHandler(env, obj)
{}

// Select which window messages will call evMsg()
bool TransHandler::wantMsg(UINT uMsg)
{
 return (uMsg == WM_CREATE ||
 WM_PAINT ||
 WM_DESTROY);
}

// Event procedure
// Return false, if message is handled by this procedure,
// true to invoke DefWindowProc()
bool TransHandler::evMsg(HWND hWnd, UINT message,
 WPARAM /* wParam */, LPARAM lParam)
{
 static HBITMAP hBm = NULL;
 HDC hDC;
 HDC hDCMem;

 16

 BITMAP bm;
 PAINTSTRUCT ps;

 switch (message)
 {
 case WM_CREATE:
 hBm = LoadBitmap(getInstance(), TEXT("ROSE"));
 break;

 case WM_PAINT:
 hDC = BeginPaint(hWnd, &ps);
 hDCMem = CreateCompatibleDC(hDC);
 SelectObject(hDCMem, hBm);
 GetObject(hBm, sizeof(bm), &bm);
 BitBlt(hDC, 0, 0, bm.bmWidth, bm.bmHeight,
 hDCMem, 0, 0, SRCCOPY);
 DeleteDC(hDCMem);
 EndPaint(hWnd, &ps);
 return false;

 case WM_DESTROY:
 DeleteObject(hBm) ;
 break;
 }
 return true;
}

In order to use the image file rose.bmp as resource, the resource file trans.rc must be
included in the project. Both files must reside in the same folder as TransHandler.cpp
and TransHandler.h.

// trans.rc

ROSE BITMAP DISCARDABLE "rose.bmp"

(Because the resource editor is not available in the current release of Visual Studio Express
Edition, trans.rc must be created with the source editor or with any other text editor.)

Fig. 2.1 shows the semi-transparent window dragged over some other application window.

 17

Fig 2.1: Semi-transparent window

2.3 Callbacks using JNIMethod<type>
One of the well-known features of JNI is calling Java methods from native code. Such
methods are often named callbacks. With JAW creating callbacks is very simple because of
the template JNIMethod<type> that is similar to JNIVar<type>. The parameterless
Java method methodeName is invoked with

JNIMethod<type>(_exposedObj, "methodName").call();

where type is the return type of methodName. As explained before, _exposedObj is
inherited from WindowHandler.

When the Java method has parameters, the invocation from C++ is somewhat more
complicated, because it is necessary to include the signature of the parameter types in the
order they are specified in the method's declaration. As an example, if we want to call the
Java method

void doIt(int i, double x, char c) {...}

from C++ , we first declare doIt() as JNIMethod<void> using the signature sequence
IDC (for int, double, char):

 18

JNIMethod<void> doIt(_exposedObj, "doIt", "IDC");

Then we pack the three parameters in a jvalue union, which is declared as follows:

typedef union jvalue {
 jboolean z;
 jbyte b;
 jchar c;
 jshort s;
 jint i;
 jlong j;
 jfloat f;
 jdouble d;
 jobject l;
} jvalue;

In our example, where we have three parameters of type int, double, char this
becomes

jvalue par[3];
par[0].i = 2;
par[1].d = 3.1415;
par[2].c = 'A';

The invocation is done with the method call() that takes the parameter par:

doIt.call(par);

In our sample application, some of the mouse events from the native window are reported
back to Java and displayed in a console redirected to a window from the package
ch.aplu.util.

// JawEx4.java

import ch.aplu.util.*;
import ch.aplu.jaw.*;

public class JawEx4 implements ExitListener
{
 private int evt;
 private int x;
 private int y;
 private NativeHandler nh;

 public JawEx4()
 {
 Console c = new Console();

 19

 c.addExitListener(this);
 nh = new NativeHandler(
 "c:\\myjni\\mouseevent\\release\\mouseevent.dll",
 this,
 "Move Window",
 10, 20,
 258, 184,
 NativeHandler.WS_POPUP | NativeHandler.WS_VISIBLE);

 System.out.println(
 "Click or drag image with left mouse button");
 while (true)
 {
 Monitor.putSleep();
 displayEvent();
 }
 }

 // Native call
 private void mouseEvent(int evt, int x, int y)
 {
 this.evt = evt;
 this.x = x;
 this.y = y;
 Monitor.wakeUp();
 }

 // Implement ExitListener
 public void notifyExit()
 {
 nh.destroy();
 System.exit(0);
 }

 private void displayEvent()
 {
 switch (evt)
 {
 case NativeMouse.lPress:
 report("LeftButtonDown", x, y);
 break;

 case NativeMouse.lRelease:
 report("LeftButtonUp", x, y);
 break;

 case NativeMouse.lDClick:
 report("LeftButtonDoubleClick", x, y);

 20

 break;
 }
 }

 private void report(String msg, int x, int y)
 {
 System.out.println(
 msg + " at x: " + x + " y: " + y);
 }

 public static void main(String args[])
 {
 new JawEx4();
 }
}

The callback method mouseEvent has 3 integer parameters, the first is a code for the event
type, the other are the coordinates x and y, where the event occurred. We strongly advice
against long lasting code in any callback, because they may happen in a rapid succession. It
is much better to copy the values to instance variables and to wake up a sleeping Java thread
that performs the more lengthy operation of displaying the values in the console window.

In the C++ project named mouseevent, we declare the class MouseEventHandler.
Like before, in order the image file rose.bmp to be loaded, the resource file
MouseEvent.rc must be part of the project.

// MouseEvent.rc

ROSE BITMAP DISCARDABLE "rose.bmp"

The interface MouseEventHandler.h is very simple.

// MouseEventHandler.h

#ifndef __MouseEventHandler_h__
#define __MouseEventHandler_h__

#include "jaw.h"

// ------------- class MouseEventHandler ---------------------
class MouseEventHandler: public WindowHandler
{
public:
 MouseEventHandler(JNIEnv * env, jobject obj);

protected:
 virtual bool wantMsg(UINT uMsg);
 virtual bool evMsg(HWND hWnd,

 21

 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);
private:
 void sendMouseMessage(int message, int x, int y);
};

#endif

In addition to reporting the mouse events in the implementation of MouseEventHandler,
the native window can be dragged by pressing the left mouse button. To realize this feature
we register WM_MOVE and move the window to its new position with SetWindowPos().

// MouseEventHandler.cpp

#include "MouseEventHandler.h"

// ----------------- Selector --------------------------------
WindowHandler *
 selectWindowHandler(JNIEnv * env, jobject obj, int select)
{
 return new MouseEventHandler(env, obj);
}

// ----------------- class MouseEventHandler ----------------
// Constructor, initialize base class
MouseEventHandler::MouseEventHandler(JNIEnv * env,
 jobject obj)
 : WindowHandler(env, obj)
{}

// Select which windows message will call evMsg()
bool MouseEventHandler::wantMsg(UINT uMsg)
{
 return (uMsg == WM_CREATE ||
 WM_LBUTTONDOWN ||
 WM_LBUTTONUP ||
 WM_LBUTTONDBLCLK ||
 WM_MOVE ||
 WM_PAINT ||
 WM_DESTROY);
}

// Event procedure
// Return false, if message is handled by this procedure,
// true to invoke DefWindowProc()
bool MouseEventHandler::evMsg(HWND hWnd, UINT message,
 WPARAM wParam , LPARAM lParam)

 22

{
 static HBITMAP hBm = NULL;
 static int xPos;
 static int yPos;
 HDC hDC;
 HDC hDCMem;
 BITMAP bm;
 PAINTSTRUCT ps;

 switch (message)
 {
 case WM_CREATE:
 hBm = LoadBitmap(getInstance(), TEXT("ROSE"));
 return false;

 case WM_LBUTTONDOWN:
 xPos = LOWORD(lParam); // Relative coordinates
 yPos = HIWORD(lParam);
 sendMouseMessage(LPRESS, xPos, yPos);
 return false;

 case WM_LBUTTONUP:
 sendMouseMessage(LRELEASE, LOWORD(lParam),
 HIWORD(lParam));
 return false;

 case WM_LBUTTONDBLCLK:
 sendMouseMessage(LDCLICK, LOWORD(lParam),
 HIWORD(lParam));
 return false;

 case WM_MOUSEMOVE:
 if (wParam == MK_LBUTTON)
 {
 int xNew = LOWORD(lParam); // Relative coordinates
 int yNew = HIWORD(lParam);
 int xDelta = xNew - xPos; // Displacement
 int yDelta = yNew - yPos;
 _xPos += xDelta; // Absolute coordinates
 _yPos += yDelta; // of upper left corner
 SetWindowPos(hWnd, HWND_TOPMOST, _xPos, _yPos, 0, 0,
 SWP_NOSIZE | SWP_SHOWWINDOW);
 }
 return false;

 case WM_PAINT:
 hDC = BeginPaint(hWnd, &ps);
 hDCMem = CreateCompatibleDC(hDC);

 23

 SelectObject(hDCMem, hBm);
 GetObject(hBm, sizeof(bm), &bm);
 BitBlt(hDC, 0, 0, bm.bmWidth, bm.bmHeight,
 hDCMem, 0, 0, SRCCOPY);
 DeleteDC(hDCMem);
 EndPaint(hWnd, &ps);
 return false;

 case WM_DESTROY:
 DeleteObject(hBm) ;
 break;
 }
 return true;
}

void MouseEventHandler::sendMouseMessage(int message,
 int x, int y)
{
 JNIMethod<void>
 mouseEvent(_exposedObj, "mouseEvent", "III");
 jvalue par[3];
 par[0].i = message;
 par[1].i = x;
 par[2].i = y;
 mouseEvent.call(par);
}

For the callback we declare mouseEvent with the parameter signature III and invoke
call() with the three integers packed into par. Fig. 2.2 shows the native window dragged
over the console window.

 24

Fig. 2.2: Callback with mouse events

2.4 Transfer of string and array data
In JAW we use the class JNIString to transfer strings between Java and the native code.
In C++ a string can be represented by a character array, where the bytes are interpreted
differently depending on the character set. In Java strings are always coded in the Unicode
character set. When a Java string is transferred to C++, different get() methods let you
decide if characters are stored in the Multibyte Character Set (MBCS), the UTF-8 or the
Unicode character encoding. When calling get() a character array of sufficient length is
created that holds the transferred characters. Do not forget to free the allocated memory with
delete[] before the program ends.

The mechanism for transferring arrays of primitive types remains the same. Template classes
JNIArray<type> are used, where type is one of wchar_t, bool, signed char,
short, int, __int64, float, double. Depending on the JVM, an internal
buffer is created, that will be automatically deallocated by JAW when the destructor of
JNIArray<> runs. Array elements are read or set by using an array pointer that is returned for

 25

all array types by the same method get(). Be aware that this pointer becomes invalid after
the destructor is executed.

For the sake of a simple demonstration we transfer string and array data from Java to C++
and then back to Java.

// JawEx5.java

import ch.aplu.jaw.*;

public class JawEx5
{
 // Native transfer data block
 private String str = "abc-äöü";
 private int[] ary = {1, 2, 3};

 public JawEx5()
 {
 NativeHandler nh =
 new NativeHandler("c:\\myjni\\data\\release\\data.dll",
 this);

 System.out.println("Sending string to C++...");
 nh.invoke(0);

 nh.invoke(1);
 System.out.println("Got back from C++ (UTF8):");
 System.out.println(str);

 nh.invoke(2);
 System.out.println("Got back from C++ (MBCS):");
 System.out.println(str);

 nh.invoke(3);
 System.out.println("Got back from C++ (Unicode):");
 System.out.println(str);

 System.out.println("Sending array to C++...");
 nh.invoke(4);
 System.out.println("Got back from C++:");
 for (int i = 0; i < 3; i++)
 System.out.print(ary[i] + ", ");

 nh.destroy();
 System.exit(0);
 }

 public static void main(String args[])

 26

 {
 new JawEx5();
 }
}

The C++ project named data declares a class DataDemo that contains the only method
invoke(). The interface DataHandler.h is very simple:

// DataHandler.h

#ifndef __DataHandler_h__
#define __DataHandler_h__

#include "jaw.h"

// ----------------- class DataDemo --------------------------
class DataDemo : public WindowHandler
{
public:
 DataDemo(JNIEnv * env, jobject obj)
 : WindowHandler(env, obj)
 {}

private:
 int invoke(int tag);
};

#endif

As you see in the following implementation, invoke(0) displays the transferred strings in
a native console using cout. invoke(1), invoke(2) and invoke(3) returns the
strings using different character sets. Because we selected the Multi-Byte character set in the
project's properties, setMBCS() returns accentuated characters correctly. Since we used
wchar_t, setUnicode() works fine too, however setUTF8() fails.

With invoke(4) the Java integer array is transferred to C++, displayed in a console,
modified and returned back to Java, where it is displayed again.

// DataHandler.cpp

#include "DataHandler.h"
#include <iostream>

using namespace std;

// ----------------- Selector -------------------------------

 27

WindowHandler *
 selectWindowHandler(JNIEnv * env, jobject obj, int select)
{
 return new DataDemo(env, obj);
}

// ----------------- class DataDemo --------------------------
int DataDemo::invoke(int val)
{
 switch (val)
 {
 case 0:
 {
 const char * charstr =
 JNIString(_exposedObj, "str").getMBCS();
 cout << "C++ got MBCS string: " << charstr << endl;
 delete[] charstr; // Release memory

 const char * utf8str =
 JNIString(_exposedObj, "str").getUTF8();
 cout << "C++ got UTF8 string: " << utf8str << endl;
 delete[] utf8str; // Release memory

 const wchar_t * unicodestr =
 JNIString(_exposedObj, "str").getUnicode();
 int len = int(wcslen(unicodestr));
 char * asciistr = new char[len + 1];
 WideCharToMultiByte(CP_ACP, 0, unicodestr, -1,
 asciistr, len+1, NULL, NULL);
 cout << "C++ got unicode string: " << asciistr << endl;
 delete[] unicodestr; // Release memory
 delete[] asciistr; // ditto
 }
 break;

 case 1:
 {
 const char * cstr = "ABC-ÄÖÜ";
 JNIString(_exposedObj, "str").setUTF8(cstr);
 }
 break;

 case 2:
 {
 const char * cstr = "ABC-ÄÖÜ";
 JNIString(_exposedObj, "str").setMBCS(cstr);
 }
 break;

 28

 case 3:
 {
 // Don't forget prefix L
 const wchar_t * unicodeStr = L"ABC-ÄÖÜ";
 JNIString(_exposedObj, "str").setUnicode(unicodeStr);
 }
 break;

 case 4:
 {
 JNIArray<int> jary(_exposedObj, "ary");
 int * ary = jary.get();
 cout << "C++ got array:" << endl;
 for (int i = 0; i < 3; i++)
 cout << (int)ary[i] << ", ";
 cout << endl;

 // Write new values back to Java
 for (int i = 0; i < 3; i++)
 ary[i] = 10*(i+1);

 // JNIArray<> destructor releases array here
 break;
 }
 }
 return 0;
}

The execution shows:

Sending string to C++...
C++ got UTF8 string: abc-Ã¤Ã¶Ã¼
C++ got MBCS string: abc-äöü
C++ got unicode string: abc-äöü
Got back from C++ (UTF8):
ABC-ÄÖÜ
Got back from C++ (MBCS):
ABC-ÄÖÜ
Got back from C++ (Unicode):
ABC-ÄÖÜ
Sending array to C++...
C++ got array:
1, 2, 3,
Got back from C++:
10, 20, 30,

 29

2.5 Using realtime measurement modules from
National Instruments

National Instruments (NI) does not provide any support for Java programmers. In their
Knowledge Base NI suggests to use a JNI wrapper:

How can I access National Instruments drivers from Java?

Solution:
National Instruments does not currently provide language interfaces for Java. It is possible, however,
to access National Instruments drivers by making calls to the driver DLL.

Sun Java includes the Java Native Interface (JNI) which allows calls to be made to C DLLs from Java.
To utilize JNI with National Instruments drivers, it is necessary to create a wrapper DLL for your
driver DLL. This wrapper DLL will comply with JNI naming requirements, and perform the conversion
from Java to C data types.

Consulting the sample programs written in C that are part of the distribution of NI-DAQmx
and the NI-DAQmx Function Reference, JAW gives you the means to integrate the Nidaq C
library smoothly into you Java code.

First you need to download and install the distribution of NI-DAQmx Base. You find it with a
internet search machine and the keywords nidaqmx download. During the installation some
DLLs are copied to the windows\system32 folder, amongst others nidaqmxbaselv.dll.

On the native side we continue to use the development environment Microsoft Visual Studio
2008 Express Edition (English version). For NI-DAQmx Base add the following items to the
project properties:

• Configuration Properties | C/C++ | General | Additional Include Directories: directory
where is NIDAQmxBase.h, e.g. c:\nidaq\include

• Configuration Properties | Linker | Input | Additional Dependencies: fully qualified path
of nidaqmxbase.lib, e.g. c:\nidaq\nidaqmxbase.lib

For our example we use the inexpensive NI-module USB-6008 with the following features:

• 8 analog input channels (12 bits), max sample rate 10 kHz (for 1 channel)
• 2 analog output channels (12 bits)
• 12 digital input/output channels
• 32 bit counter

After installing the NI-DAQmx Base software, the module is automatically recognized as
new USB device.

 30

2.5.1 Porting acquire1Scan
In our next example we port the functionalities of the sample program acquire1Scan.c
that is included in the NI-DAQmx distribution from C to Java. The application reads a single
value from the analog input and displays it in a console window. The original source is well
documented, if further information is needed consult the NI-DAQmx Base C Function
Reference found with an internet search machine. Here is the code in the original formatting:

/***
*
* ANSI C Example program:
* acquire1Scan.c
*
* Example Category:
* AI
*
* Description:
* This example demonstrates how to take a single Measurement
* (Sample) from an Analog Input Channel.
*
* Instructions for Running:
* 1. Select the Physical Channel to correspond to where your
* signal is input on the DAQ device.
* 2. Enter the Minimum and Maximum Voltage Ranges.
* Note: For better accuracy try to match the Input Ranges to the
* expected voltage level of the measured signal.
* Note: Use the genVoltage example to provide a signal on
* your DAQ device to measure.
*
* Steps:
* 1. Create a task.
* 2. Create an Analog Input Voltage Channel.
* 3. Use the Read function to Measure 1 Sample from 1 Channel on
* the Data Acquistion Card. Set a timeout so an error is
* returned if the sample is not returned in the specified time
* limit.
* 4. Display an error if any.
*
* I/O Connections Overview:
* Make sure your signal input terminal matches the Physical
* Channel I/O Control.
*
* Recommended Use:
* Call the Read function.
*
***/

#include "NIDAQmxBase.h"
#include <stdio.h>

#define DAQmxErrChk(functionCall) \
 { if(DAQmxFailed(error=(functionCall))) { goto Error; } }

int main(int argc, char *argv[])
{
 // Task parameters
 int32 error = 0;
 TaskHandle taskHandle = 0;

 31

 char errBuff[2048]={'\0'};

 // Channel parameters
 char chan[] = "Dev1/ai0";
 float64 min = -10.0;
 float64 max = 10.0;

 // Timing parameters
 uInt64 samplesPerChan = 1;

 // Data read parameters
 float64 data;
 int32 pointsToRead = 1;
 int32 pointsRead;
 float64 timeout = 10.0;

 DAQmxErrChk (DAQmxBaseCreateTask("",&taskHandle));
 DAQmxErrChk (DAQmxBaseCreateAIVoltageChan(
 taskHandle,chan,"",DAQmx_Val_Cfg_Default,min,
 max,DAQmx_Val_Volts,NULL));
 DAQmxErrChk (DAQmxBaseStartTask(taskHandle));
 DAQmxErrChk (DAQmxBaseReadAnalogF64(
 taskHandle,pointsToRead,timeout,DAQmx_Val_GroupByChannel,
 &data,samplesPerChan,&pointsRead,NULL));

 printf ("Acquired reading: %f\n", data);

Error:
 if(DAQmxFailed(error))
 DAQmxBaseGetExtendedErrorInfo(errBuff,2048);
 if(taskHandle!=0) {
 DAQmxBaseStopTask(taskHandle);
 DAQmxBaseClearTask(taskHandle);
 }
 if(DAQmxFailed(error))
 printf("DAQmxBase Error: %s\n",errBuff);
 return 0;
}

As you see, the initialization is done step-by-step. We will maintain this process in the Java
code by calling invoke() with several different parameters. The return value is used as
error code: 0 means success, -1 means failure. Java can retrieve and display the description
of the error from the String errorDescription. The Java application uses a console
window from the package ch.aplu.util.

// JawEx6.java
// Prototype is Acquire1Scan from NIDAQmx distribution
// Acquire analog data and display in modeless dialog
// For demonstration with NI USB-6008 interface
// Apply voltage +-5V max at terminals #2 and #1 (GND) or
// attach 10 kOhm potentiometer at terminals #31/#32
// with potentiometer tap at terminal #2
// Timed by API Sleep

 32

import ch.aplu.jaw.*;
import ch.aplu.util.*;

public class JawEx6 implements ExitListener
{
 // Native transfer data block
 private String channel = "Dev1/ai0"; // DeviceID/channel
 private double min = -10; // Input range min
 private double max = 10; // Input range max
 private double value; // Acquired data
 private String errorDescription = ""; // Error report buffer
 private int period = 1000; // Measurement interval (ms)
 // End of native transfer data block

 private NativeHandler nh =
 new NativeHandler("c:\\myjni\\nidaq\\release\\nidaq.dll",
 this); // Provide access by exposing
 private enum State{failed, initializing, running, quitting};
 private volatile State state = State.initializing;

 public JawEx6()
 {
 Console c = Console.init();
 c.addExitListener(this);
 System.out.println("Initializing...");
 System.out.print(" Creating task...");
 if (nh.invoke(0) == -1)
 {
 showError();
 return;
 }
 System.out.println("OK");

 System.out.print(" Open channel...");
 if (nh.invoke(1) == -1)
 {
 showError();
 return;
 }
 System.out.println("OK");

 System.out.print(" Start task...");
 if (nh.invoke(2) == -1)
 {
 showError();
 return;
 }
 System.out.println("OK");

 33

 System.out.println("\nGetting data...");
 int nb = 1;
 state = State.running;
 while (state == State.running)
 {
 if (nh.invoke(3) == -1)
 break;
 else
 {
 System.out.
 println("Data #" + nb + ": " + value + " V");
 nh.invoke(4); // Sleep a while
 nb++;
 }
 }
 if (state == State.running)
 {
 state = State.failed;
 System.out.println("\nError while acquiring data");
 }
 else
 System.out.println("\nStopped by user");
 }

 private void showError()
 {
 state = State.failed;
 System.out.println("\nError: " + errorDescription);
 }

 public void notifyExit()
 {
 switch (state)
 {
 case failed:
 nh.destroy();
 System.exit(1);
 break;

 case initializing:
 // Don't interrupt
 break;

 case running:
 state = State.quitting;
 break;

 34

 case quitting:
 nh.destroy();
 System.exit(0);
 break;
 }
 }

 public static void main(String args[])
 {
 new JawEx6();
 }
}

Once again, the data transfer between Java and C++ is done with Java instance variables that
can be accessed from both side. We are careful to free all allocated resources by calling
destroy() when the program ends. A state variable implemented as enum makes the
program design simple.

Because we initialize step-by-step, some variables must survive from one call of invoke() to
another. Therefore we copy the passed values into C++ instance variables (member
variables). You create a new C++ project named nidaq and code the header file
NIDAQHandler.h first, where the original naming and formatting conventions are
maintained.

// NIDAQHandler.h

#ifndef __NIDAQHandler_h__
#define __NIDAQHandler_h__

#include "jaw.h"
#include "NIDAQmxBase.h"

// ---------------- class NIDAQAcquire1Scan --------------
class NIDAQAcquire1Scan : public WindowHandler
{
public:
 NIDAQAcquire1Scan(JNIEnv * env, jobject obj);
 ~NIDAQAcquire1Scan();

private:
 int invoke(int tag);
 int period;

 // Task parameters
 int32 error;
 TaskHandle taskHandle;
 char errBuff[2048];

 35

 // Channel parameters
 const char* chan;
 float64 min;
 float64 max;

 // Timing parameters
 uInt32 samplesPerChan;

 // Data read parameters
 float64 data;
 int32 pointsToRead;
 int32 pointsRead;
 float64 timeout;
};

#endif

In implementation NIDAQHandler.cpp most of the original C program is copied. There
is no need to understand each detail. We maintain the function call and error recovery using
the macro DAQmxErrChk. Instead of displaying the error message with printf(), we
copy it into the string errorDescription, where it can be retrieved by Java.

// NIDAQHandler.cpp
// Must link with nidaqmxbase.lib

#include "NIDAQHandler.h"

// ----------------- Selector --------------------------------
WindowHandler *
 selectWindowHandler(JNIEnv * env, jobject obj, int select)
{
 return new NIDAQAcquire1Scan(env, obj);
}

#define DAQmxErrChk(functionCall) \
 { if (DAQmxFailed(error = (functionCall))) { goto Error; } }

// ----------------- class NIDAQAcquire1Scan -----------------
// National Instruments NIDAQmx
// Prototype "acquire1Scan" from distribution of NI-DAQmx

NIDAQAcquire1Scan::NIDAQAcquire1Scan(JNIEnv * env,
 jobject obj)
 : WindowHandler(env, obj),
 samplesPerChan(1),
 timeout(10.0),
 pointsToRead(1)
{

 36

 period = JNIVar<int>(_exposedObj, "period").get();
 chan = JNIString(_exposedObj, "channel").getUTF8();
 min = JNIVar<double>(_exposedObj, "min").get();
 max = JNIVar<double>(_exposedObj, "max").get();
}

NIDAQAcquire1Scan::~NIDAQAcquire1Scan()
{
 delete [] chan;
 if(taskHandle != 0)
 {
 DAQmxBaseStopTask(taskHandle);
 DAQmxBaseClearTask(taskHandle);
 }
}

int NIDAQAcquire1Scan::invoke(int val)
// Returns 0, if successful, -1, if error
{
 switch (val)
 {
 case 0: // Create task
 DAQmxErrChk(DAQmxBaseCreateTask("", &taskHandle));
 break;

 case 1: // Open channel
 DAQmxErrChk(
 DAQmxBaseCreateAIVoltageChan(taskHandle,
 chan, "",
 DAQmx_Val_RSE,
 min,
 max,
 DAQmx_Val_Volts,
 NULL));
 break;

 case 2: // Start task
 DAQmxErrChk(DAQmxBaseStartTask(taskHandle));
 break;

 case 3: // Get data
 DAQmxErrChk(
 DAQmxBaseReadAnalogF64(taskHandle,
 pointsToRead,
 timeout,
 DAQmx_Val_GroupByChannel,
 &data,
 samplesPerChan,

 37

 &pointsRead,
 NULL));
 JNIVar<double>(_exposedObj, "value").set(data);
 break;

 case 4: // Sleep
 Sleep(period);
 break;
 }
 return 0;

Error:
 if (DAQmxFailed(error))
 DAQmxBaseGetExtendedErrorInfo(errBuff, 2048);
 if (taskHandle!=0)
 {
 DAQmxBaseStopTask(taskHandle);
 DAQmxBaseClearTask(taskHandle);
 }
 if (DAQmxFailed(error))
 {
 JNIString(_exposedObj,"errorDescription").setMBCS(errBuff);
 return -1;
 }
 return 0;
}

If everything goes well, the values of a slowly varying voltage from the ADC is displayed
every second (Fig. 2.3).

 38

Fig. 2.3 Output from JawEx6 when the input voltage varies slowly

2.5.2 Porting contAcquireNScan
When the sample rate exceeds 1000 Hz, reading and processing each single data with a timer
is not suitable. Entire blocks of data should be transferred from a acquisition module to a fast
buffer (often implemented with DMA). The module hardware and the driver software must
be designed accordingly, as it is the case with NI modules and the NI-DAQmx software. The
sample program contAcquireNScan from the NI-DAQmx distribution shows how to
proceed. With JAW it is rather simple to port the functionalities to Java. (For lack of space,
the original code is not show here.)

Like a two channel oscilloscope, the application shows two input signals from the ADC at a
sampling rate of 5 kHz (sampling period 0.2 ms) in a simple graphics window (using
GPanel from the package ch.aplu.util). Most of the ideas comes from the previous
example and are not explained again. We still initialize step-by-step and display the results in
the title bar of the graphics window. A single data block (burst) contains 200 values of each
channel and is retrieved from the native buffer by calling invoke(5). We must ensure that
this call is repeated every 200 * 0.2 ms = 40 ms on average, in order to avoid any buffer

 39

overflow. When the system is heavily loaded by other processes, this value can be exceeded
for a while without loosing any data or getting incorrect values.

In order to terminate the application properly, an ExitListener is implemented, so that
notifyExit() is called, when the close button of the graphics window is hit. In
notifyExit() all necessary cleanup operations are done.

// JawEx7.java
// ContAcquireNScan from NIDAQmx distribution
// Acquire faster varying analog data and display on GPanel
// For demonstration with NI USB-6008 interface
// connect a first signal at terminals #2 and #32(GND)
// and a second signal at terminals #5 and #32(GND)
// both in range -10..10V

import java.awt.Color;
import ch.aplu.util.*;
import ch.aplu.jaw.*;

public class JawEx7 implements ExitListener
{
 // Transfer variables
 private String channel = "Dev1/ai0, Dev1/ai1"; // AI0 & AI1
 private double min = -10; // Measuring range -10..10V
 private double max = 10;
 private double sampleRate = 5000.0; // Samples per seconds
 private long samplesPerChannel = 200; // Samples per burst
 private String errorDescription =
 new String(); // Verbose error report
 private double[] data =
 new double[2*(int)samplesPerChannel]; // Data per burst
 // End of native variables

 private NativeHandler nh;
 private int time = 0;
 private int maxTime = 2000; // ms
 private double dt = 1000.0 / sampleRate; // ms
 private GPanel p = new GPanel(0, maxTime, min, max);
 private volatile boolean isRunning = false;
 private double offset0 = 4; // y-offset of AI0
 private double offset1 = -4; // y-offset of AI1
 private String title = "NI ADC - x: " + (maxTime / 10) +
 " ms/div; y: " + (max - min) / 10 + " V/div";

 public JawEx7()
 {
 p.title("Initializing...");
 drawCoordinateSystem();
 p.addExitListener(this);

 40

 nh = new NativeHandler(
 "c:\\myjni\\nidaqc\\release\\nidaqc.dll",
 this);

 if (isError(nh.invoke(0)))
 return;
 if (isError(nh.invoke(1)))
 return;
 if (isError(nh.invoke(2)))
 return;
 if (isError(nh.invoke(3)))
 return;
 if (isError(nh.invoke(4)))
 return;

 p.title(title);
 int pointsRead; // Number of samples in one burst
 int oldTime = 0;
 double oldEndData0 = 0;
 double oldEndData1 = 0;
 isRunning = true;
 while (isRunning)
 {
 while (time < maxTime)
 {
 // Get data block by block
 pointsRead = nh.invoke(5);
 if (pointsRead == 0)
 {
 p.title("Error while reclaiming data");
 isRunning = false;
 break;
 }

 // Draw signal AI0
 p.color(Color.red);
 p.move(oldTime, oldEndData0);
 for (int i = 0; i < pointsRead; i++)
 p.draw(time + i * dt, data[2*i] + offset0);
 oldEndData0 = data[2*(pointsRead-1)] + offset0;

 // Draw signal AI1
 p.color(Color.green);
 p.move(oldTime, oldEndData1);
 for (int i = 0; i < pointsRead; i++)
 p.draw(time + i * dt, data[2*i+1] + offset1);
 oldEndData1 = data[2*(pointsRead-1) + 1] + offset1;

 41

 time += pointsRead * dt;
 oldTime = time;
 }
 if (!isRunning)
 break;
 p.clear();
 drawCoordinateSystem();
 oldTime = 0;
 oldEndData0 = 0;
 oldEndData1 = 0;
 time = 0;
 }
 }

 public void notifyExit()
 {
 if (isRunning)
 {
 isRunning = false;
 p.title(title + " - stopped");
 }
 else
 {
 nh.destroy();
 System.exit(0);
 }
 }

 private void drawCoordinateSystem()
 {
 p.color(Color.black);
 double xspan = maxTime / 10;
 for (int i = 0; i <= 10; i++)
 p.line(i * xspan, -10, i * xspan, 10);
 double yspan = (max - min) / 10;
 for (int i = 0; i <= 10; i++)
 p.line(0, min + i * yspan, maxTime, min + i * yspan);
 }

 private boolean isError(int rc)
 {
 if (rc == -1)
 {
 p.title(errorDescription);
 nh.destroy();
 return true;
 }
 return false;

 42

 }

 public static void main(String args[])
 {
 new JawEx7();
 }
}

As usual create a new C++ project named nidaqc and write the code with the original C
code at hand. First write NIDAQHandler.h which is very similar to the previous example.

// NIDAQHandler.h

#ifndef __NIDAQHandler_h__
#define __NIDAQHandler_h__

#include "NIDAQmxBase.h"
#include "jaw.h"

// ---------------- class NIDAQContAcquireNScan --------------
class NIDAQContAcquireNScan : public WindowHandler
{
public:
 NIDAQContAcquireNScan(JNIEnv * env, jobject obj);
 ~NIDAQContAcquireNScan();

private:
 int invoke(int tag);

 // Task parameters
 int32 error;
 TaskHandle taskHandle;
 char errBuff[2048];
 int32 i;

 // Channel parameters
 const char* chan;
 float64 min;
 float64 max;

 // Timing parameters
 char clockSource[128];
 uInt64 samplesPerChan;
 float64 sampleRate;

 // Data read parameters
 int32 pointsToRead;
 int32 pointsRead;

 43

 float64 timeout;
};

#endif

The implementation is scarcely different from the previous example and should be self-
explanatory by consulting the original code of AcquireNScan.c. We just point out how
easy it is to fill the Java array by calling invoke(5). You simply get the array pointer with

JNIArray<double> jary(_exposedObj, "data");
double * data = jary.get();

and pass it to DAQmxBaseReadAnalogF64() for filling the Java array.

// NIDAQHandler.cpp
// National Instruments NI-DAQmx
// Prototype contAcquireNScan.c from distribution of NI-DAQmx

#include "NIDAQHandler.h"

#define DAQmxErrChk(functionCall) \
 { if (DAQmxFailed(error = (functionCall))) { goto Error; } }

// ----------------- Selector --------------------------------
WindowHandler *
 selectWindowHandler(JNIEnv * env, jobject obj, int select)
{
 return new NIDAQContAcquireNScan(env, obj);
}

// ----------------- class NIDAQContAcquireNScan -------------
NIDAQContAcquireNScan::NIDAQContAcquireNScan(JNIEnv * env,
 jobject obj)
 : WindowHandler(env, obj),
 samplesPerChan(1),
 timeout(10.0),
 pointsToRead(1)
{
 chan = (_exposedObj, "channel").getUTF8();
 min = JNIVar<double>(_exposedObj, "min").get();
 max = JNIVar<double>(_exposedObj, "max").get();
 samplesPerChan =
 JNIVar<__int64>(_exposedObj, "samplesPerChannel").get();
 sampleRate =
 JNIVar<double>(_exposedObj, "sampleRate").get();

 44

 // Timing parameters
 strcpy(clockSource, "OnboardClock");

 // Data read parameters
 pointsToRead = (int32)samplesPerChan;
}

NIDAQContAcquireNScan::~NIDAQContAcquireNScan()
{
 delete [] chan;
 if(taskHandle != 0)
 {
 DAQmxBaseStopTask(taskHandle);
 DAQmxBaseClearTask(taskHandle);
 }
}

int NIDAQContAcquireNScan::invoke(int val)
// Returns 0, if successful, -1, if error
{
 switch (val)
 {
 case 0: // Create task
 DAQmxErrChk(DAQmxBaseCreateTask("", &taskHandle));
 break;

 case 1: // Open channel
 DAQmxErrChk(
 DAQmxBaseCreateAIVoltageChan(taskHandle,
 chan, "",
 DAQmx_Val_RSE,
 min, max,
 DAQmx_Val_Volts,
 NULL));
 break;

 case 2: // Configure internal clock
 DAQmxErrChk(
 DAQmxBaseCfgSampClkTiming(taskHandle,
 clockSource,
 sampleRate,
 DAQmx_Val_Rising,
 DAQmx_Val_ContSamps,
 samplesPerChan));
 break;

 case 3: // Allocate buffer

 45

 DAQmxErrChk(
 DAQmxBaseCfgInputBuffer(taskHandle, 200000));
 break;

 case 4: // Start task
 DAQmxErrChk(DAQmxBaseStartTask(taskHandle));
 break;

 case 5: // Acquire data
 JNIArray<double> jary(_exposedObj, "data");
 double * data = jary.get();

 DAQmxErrChk(
 DAQmxBaseReadAnalogF64(taskHandle,
 pointsToRead,
 timeout,
 DAQmx_Val_GroupByScanNumber,
 data,
 2*(int)samplesPerChan,
 &pointsRead,
 NULL));
 return pointsRead;
 }
 return 0;

Error:
 if (DAQmxFailed(error))
 DAQmxBaseGetExtendedErrorInfo(errBuff, 2048);
 if (taskHandle!=0)
 {
 DAQmxBaseStopTask(taskHandle);
 DAQmxBaseClearTask(taskHandle);
 }
 if (DAQmxFailed(error))
 {
 JNIString(_exposedObj, "errorDescription").
 setMBCS(errBuff);
 return -1;
 }
 return 0;
}

When connecting two low-frequency signal generators to the ADC module, a graphics like
fig. 2.4 is displayed.

 46

Abb. 2.4 Two channel oscilloscope with JawEx7

2.6 Data transfer using JNIBuffer
In analogy to streams, most drivers for typical measurement interfaces have three
fundamental operations: initializing, (open operation), reading data from input
ports/writing data to output ports (read/write operations) and releasing resources
(close operation). If the distribution contains a DLL and its accompanying import library

 47

(.lib) and a documentation of the function calls is available, with JAW you easily integrate
these interfaces into Java without any knowledge of the cumbersome JNI.

If you do not have the import library, you may create it from the DLL with a utility normally called
implib. A version of this tool is found in the distribution of the free Borland C++ compiler (found with
a internet search machine and the keywords "free borland compiler")

In the next example we show the typical procedure to develop a Java application to acquire
data from a measurement device. Similar to the previous examples a class derived from
WindowHandler is declared. The constructor initializes (opens) the driver, the destructor
closes it. For slow acquisition rates (1 Hz or lower) we acquire single values by calling
invoke() and read the data back to Java via instance variables. For the clocking a Java
timer is used. For faster acquisition rates (to a maximum of 1000 Hz) it is preferable to use a
native timer, that runs in a high priority native thread independent (asynchronous) of any
Java thread. In order to avoid overflows when the CPU is heavily charged, the acquired data
should be buffered in a native FIFO buffer (called JNIBuffer) and not passed directly to
Java. Because the implementation of circular FIFO buffers is not straightforward, JAW
offers its own implementation as follows:

In your Java application create an array of the desired data type, e.g. for characters

char[] values = new char[5];

The size of this buffer is determined by the number of data that you want to transfer from
C++ to Java in one junk, but has nothing to do with the size of the native JNIBuffer. You
create the JNIBuffer, that contains 18 elements with an instance nh of
NativeHandler

nh.createBuf(values, 18);

If you omit the size parameter, a default of 1000 applies. In C++ you fill the buffer with
write<type> methods, e.g. for characters

writeChar('A');
writeChar('B');
writeChar('C');
writeChar('D');
writeChar('E');

readBuf() transfers the given number of data (or all available data) from the JNIBuffer to
the Java array, e.g.

readBuf(2);

requests 2 elements from the JNIBuffer. If less than 2 elements are available, only these
are transferred to the Java array. readBuf() returns the number of elements actually
transferred. Since we have 5 characters in the JNIBuffer, we get 2 and the "oldest" two
characters, 'A' and 'B', are transferred.

Since the JNIBuffer is implemented as circular FIFO buffer, its head pointer is advanced
for two elements. Java accesses the transferred elements through value[0] and

 48

value[1]. Fig. 1.5 illustrates this process (of course the empty fields are not really empty
but contains invalid data).

Since JNIBuf is a circular buffer, there is never a memory overflow. When the buffers fills
up, an overflow flag is set and subsequent data are lost. The state of this flag may be
requested (and reset) by isBufOverflow().

�

�
�

�
� � � 	

�

 �

writeChar('A');
writeChar('B');
writeChar('C');
writeChar('D');
writeChar('E');

� � � � � � � � � �

�
�

� �

�

�
�
�
�

	
�

 �

�
�

readBuf(2);

� � � � � � � � �

� � �� � �

Fig. 2.5 JAW FIFO buffer (JNIBuffer) of size 18

In the next example you learn how this works. We use a low-cost interface USB-AD12 from
BMC (http://www.bmcm.de), but if you do not have this module, you can define

#define simulation

and the programs runs in a simulation mode.

 49

The module USB-AD12 has 16 analog input channels (12 bits, +- 5V, single ended), one output
channel (12 bits) and 4 digital I/O channels. The function library is freely available from the
manufacture's homepage (search machine with keywords libad4 sdk). It contains the DLL libad4.dll
and its import library libad4.lib. The USB driver called install-drivers-<version>.exe must be installed
separately.

Like in the previous example, the acquired data are displayed in a simple graphics window
(GPanel from package ch.aplu.util). A native timer that runs in a native high-priority
thread, requests a new voltage value every 20 ms. In the title bar of the graphics window we
show the number of remaining data elements in the JNIBuffer. Because this number can
exceed 100 when the system is heavily loaded, you realize the need of a native FIFO buffer.
In the reading loop we call readBuf(1) and transfer only one element, if one is available.

// JawEx8.java

import ch.aplu.jaw.*;
import ch.aplu.util.*;

public class JawEx8 implements ExitListener
{
 // Native variables
 private String device = "usb-ad";
 private int period = 20; // ms
 private int maxTime = 10000; // ms
 private double range = 5; // +- 5V
 // End of native variables

 private NativeHandler nh;
 private GPanel p = new GPanel(0, maxTime, -range, range);

 public JawEx8()
 {
 p.addExitListener(this);
 nh = new NativeHandler(
 "c:\\myjni\\bmc\\release\\bmc.dll", this);
 double[] values = new double[1]; // Array of 1 double
 nh.createBuf(values); // JNIBuffer with default bufSize
 nh.startThread(); // Start high priority thread

 int time = 0;
 while (true)
 {
 int nbPending = nh.countBuf();
 // Show number of pending data on heavily loaded systems
 if (time > 0 && time % 200 == 0)
 p.title("Buffer Count: " + nbPending);

 // Read exactly one element from buffer
 if (nh.readBuf(1) == 1)

 50

 {
 if (time == 0)
 {
 p.clear();
 drawCoordinateSystem();
 p.move(time, values[0]);
 }
 else
 p.draw(time, values[0]);
 time += period;
 if (time > maxTime)
 time = 0;
 }
 // Sleep 1 ms if few pending data
 // in order to decrease CPU load substantially
 if (nbPending < 2)
 Console.delay(1);
 }
 }

 private void drawCoordinateSystem()
 {
 double xspan = maxTime / 10;
 for (int i = 0; i <= 10; i++)
 p.line(i * xspan, -10, i * xspan, 10);
 double yspan = 2*range / 10;
 for (int i = 0; i <= 10; i++)
 p.line(0, -range + i * yspan,
 maxTime, -range + i * yspan);
 }

 public void notifyExit()
 {
 nh.destroy();
 System.exit(0);
 }

 public static void main(String args[])
 {
 new JawEx8();
 }
}

We will not waste CPU time when no elements are ready to be transferred. Therefore we put
the Java thread to sleep for 1 ms, if the number of available elements is less than 2. Because
we read a new value every 20 ms and the JNIBuffer may contain up to 1000 elements,
there is little risk for a buffer overflow when the system is busy.

 51

On the C++ side create a new project name bmc. Consult the sample programs and the
documentation distributed with libad4. This gives you enough information how to write
the code. If you don't possess the ADC module, just look at the parts that compile when
simulation is defined. First write BMCHandler.h and declare the class AudioIn:

// BMCHandler.h

#ifndef __BMCHandler_h__
#define __BMCHandler_h__

#include "jaw.h"
#include "libad.h"

// ---------------- class AnalogIn ------------------
class AnalogIn : public WindowHandler
{
public:
 AnalogIn(JNIEnv * env, jobject obj);
 ~AnalogIn();

protected:
 virtual bool wantThreadMsg(UINT uMsg);
 virtual void evThreadMsg(HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);
private:
 int period;
 int maxTime;
 double range;
 int32_t adHandle;
};

#endif

The constructor of AnalogIn fetches the Java variables and initializes the module with
ad_open(). On the other hand we release all resources in the destructor by calling
ad_close(). Remember that the constructor is executed when NativeHandler is
instantiated und the destructor runs when destroy() is called.

From chapter 2 we know the role of wantThreadMsg() and evThreadMsg(). We use
the occurrence of WM_THREADSTART to call the API function SetTimer() to setup a
native timer with the given period. We release its resources with KillTimer() when
WM_TREADSTOP occurs. On each timer event we get a WM_TIMER message. Then we
read a new value from the interface by calling ad_discrete_in() or generate a value
from a damped oscillation when running in simulation mode. writeDouble() writes this

 52

value into the JNIBuffer. There is no need of a notification to the Java program because
Java fetches the values in the JNIBuffer asynchronously in its own thread.

Accessing Java variables or invoking callbacks in evThreadMsg() is not allowed, because the native
thread and the JVM are not synchronized.

// BMCHandler.cpp
// Must link with libad4.lib, unless using simulation mode

#include "BMCHandler.h"
#include <math.h>

#define simulation

// ----------------- Selector --------------------------------
WindowHandler *
 selectWindowHandler(JNIEnv * env, jobject obj, int select)
{
 return new AnalogIn(env, obj);
}

// ----------------- class AnalogIn --------------------------
AnalogIn::AnalogIn(JNIEnv * env, jobject obj)
 : WindowHandler(env, obj)
{
 const char * driver =
 JNIString(_exposedObj, "device").getMBCS();
 period = JNIVar<int>(_exposedObj, "period").get();
 maxTime = JNIVar<int>(_exposedObj, "maxTime").get();
 range = JNIVar<double>(_exposedObj, "range").get();
#ifndef simulation
 adHandle = ad_open(driver);
#endif
 delete [] driver;
}

 AnalogIn::~AnalogIn()
 {
#ifndef simulation
 if (adHandle >= 0)
 ad_close(adHandle);
#endif
 }

 bool AnalogIn::wantThreadMsg(UINT uMsg)
{
 return (uMsg == WM_THREADSTART ||
 WM_TIMER ||
 WM_THREADSTOP);

 53

 }

void AnalogIn::evThreadMsg(HWND /*hwnd*/,
 UINT message,
 WPARAM /* wParam */,
 LPARAM /* lParam */)
// Runs in JNIThread and not in the normal application thread
{
 #define ID_TIMER 1
 double value;
 static double time = 0;

 switch (message)
 {
 case WM_THREADSTART:
 SetTimer(0, ID_TIMER, period, (TIMERPROC)NULL);
 break;

 case WM_TIMER:
#ifdef simulation
 value = range*exp(-0.0004*time)*sin(0.005*time);
 time += period;
 if (time > maxTime)
 time = 0;
#else
 int32_t channel = 1;
 uint32_t data;
 ad_discrete_in(adHandle,
 AD_CHA_TYPE_ANALOG_IN | channel,
 0, &data);
 // Interprete data as 32-bit 2's complement
 // and convert to volts
 value = range * (int)data / (double)0x80000000;
#endif
 // Copy to JNIBuffer
 writeDouble(value);
 break;

 case WM_THREADSTOP:
 KillTimer(0, ID_TIMER);
 break;
 }
}

When running the simulation, the damped oscillation is shown. In the title bar you find the
number of available values in the JNIBuf waiting to be fetched by Java. Normally this
number is 0 or 1, but when the system is heavily loaded (to do so, start a big application),

 54

this number may increase over 100. Because all the stored values are fetched later on, the
curve is somewhat delayed but displayed without any error (Fig. 2.5).

Fig. 2.5 JawEx8 in simulation mode

 55

3 Apendix: Installation of
Microsoft Visual Studio

Microsoft Visual Studio is a development suite for creating programs running under
Microsoft Windows. Several languages are supported, essentially Visual Basic, Visual C++
and Visual C#. All of them uses the same Integrated Development Environment (IDE).

A promotion version Visual Studio Express Edition is available free of charge. (You find it
with a internet search machine and the keywords Visual Studio Express Edition download.)
Despite of the somewhat reduced functionality compared to the commercial versions (lack of
classes, no resource editor, etc.), it is fully adequate for developing applications with the
JAW framework. For JAW only Visual C++ is needed.

After downloading and installing the Visual C++ part of Visual Studio you better test the
installation by creating a sample application. As everywhere on the world, it is the Hello
World that writes a greeting message to a console window. Proceed as follows:

• Select File | New | Project. A dialog appears
• Select in pane Project types: Win32 and in pane Templates: Win32 Console Application.

Type in text field Name whatever you like, e.g. HelloWorld and click OK
• In the first dialog of the Win32 Application Wizard click Next. Under Application Type

select Console application and under Additional options Empty project. Click Finish
• In the Solution Explorer pane right-click on Source Files and select Add | New Item
• In the dialog select in pane Templates: C++ File und enter a name, e.g. HelloWorld.

Click Add and the program editor will open. Enter the following code:

// HelloWorld.cpp

#include <iostream>

using namespace std;

void main()
{
 cout << "Hello World" << endl;
}

• In the toolbar's list box that contains Debug, select Release and compile/link using the
menu option Build | Build solution

• HelloWorld.exe will be created in the subdirectory Release of the project folder.
Run it with the menu option Debug | Start Without Debugging (or Ctrl-F5)

 56

JAW uses the Win32-API and does not support the .NET framework. This makes it easy to
create the DLLs with any other C++ compiler/linker such as Borland C++, gcc etc. If another
compiler/linker or an old version of VC++ is used, it may be necessary to link with a slightly
adapted version of jaw.lib. More information about availability of older or non VC-
versions of the JAW library is obtained from www.aplu.ch/jaw.

